COC 832 - Tópicos Especiais em Modelagem Física e Numérica de Estruturas de Contenção

Objetivos

Desenvolver conceitos sobre modelagem física e numérica de estruturas de contenção, incluindo solo reforcados 

Ementa (Syllabus)

  1. Serão apresentadas procedimentos para modelagem física e numérica desse tipo de estruturas.
  2. Serão destacadas a influência de diversos fatores (inclinação da face, rigidez da face e dos reforços, restrições a movimentações na base e sobrecargas) no comportamento e desempenho destas sob condições operacionais. 

 

Bibliografia (Bibliography

  • [1] Bathurst, R.J., Nernheim, A., Walters, D.L., Allen, T.M., Burgess, P., Saunders, D.D., 2009. Influence of reinforcement stiffness and compaction on the performance of four geosynthetic reinforced soil walls. Geosynth. Int. 16 (1), 43–59.
  • [2] BSI, 2010. BS 8006-1: Code of Practice for Strengthened/reinforced Soils and Other Fills. BSI, London, UK.
  • [3] Benhamida B., Unterreiner P., Schlosser F., (1997). Numerical analysis of a full scale experimental soil nailed wall. Journal Ground Improvement, p. 453-458.
  • [4] Cartier, G., Gigan, J. P. (1983). Experiments and Observations on Soil Nailing Structures. In: Proceedings of the 8th European Conference on Soil Mechanics and Foundation Engineering (ECSMFE), Helsinki, Finland, 2, p. 473-476.
  • [5] Clouterre (1991). Recomendations Clouterre - Soil Nailing Recommendations for Designing, Calculating, Constructing and Inspecting Earth Support Systems Using Soil Nailing (English Translation). Scientific Committee of the French National Project Clouterre, ENPC, Paris, France. In: Report FHWA-SA-93-026, U.S. Department of Transportation, Federal Highway Administration, Washington, DC, USA.
  • [6] Ehrlich, M., Almeida, M.S.S. e Lima, A. M. L. (1996). Parametric numerical analysis of soil nailing system. In: 2nd International Conference on Soil Reinforcement, Fukuoka, Japão, p. 747-752.
  • [7] Ehrlich, M., Mirmoradi, S.H., Saramago, R.P., 2012. Evaluation of the effect of compaction on the behavior of geosynthetic-reinforced soil walls. J. Geotext. Geomembranes 34, 108–115.
  • [8] Guler, E., Hamderi, M., Demirkan, M.M., 2007. Numerical analysis of reinforced soil retaining wall structures with cohesive and granular backfills. Geosynth. Int. 14 (6), 330–345.
  • [9] Hatami, K., Bathurst, R.J., 2005. Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions. Can. Geotech. J. 42 (4), 1066–1085.
  • [10] Hatami, K., Bathurst, R.J., 2006. Numerical model for reinforced soil segmental walls under surcharge loading. J. Geotech. Geoenviron. Eng. 132 (6), 673–684.
  • [11] Huang, B., Bathurst, R.J., Hatami, K., 2009. Numerical study of reinforced soil segmental walls using three different constitutive soil models. J. Geotech. Geoenviron. Eng. 135 (10), 1486–1498.
  • [12] Itasca Consulting Group, 2016. FLAC - Fast Lagrangian Analysis of Continua. Version 8.0. Itasca Consulting Group, Minneapolis.
  • [13] Jiang, Y., Han, J., Zornberg, J., Parsons, R.L., Leshchinsky, D., Tanyu, B., 2019. Numerical analysis of field geosynthetic-reinforced retaining walls with secondary reinforcement. Geotechnique 69 (2), 122–132.
  • [14] Mirmoradi, S.H., Ehrlich, M., 2014. Modeling of the compaction-induced stresses in numerical analyses of GRS walls. Int. J. Comput. Methods (IJCM) Special Issue “Comput. Geomech.” 11 (2), 14.
  • [15] Mirmoradi, S.H., Ehrlich, M., 2015a. Modeling of the compaction-induced stress on reinforced soil walls. J. Geotext. Geomembranes 43 (1), 82–88.
  • [16] Mirmoradi, S.H., Ehrlich, M., 2015b. Numerical evaluation of the behavior of GRS walls with segmental block facing under working stress conditions. ASCE J. Geotech. Geoenviron. Eng. 141 (3) 04014109.
  • [17] Mirmoradi, S.H., Ehrlich, M., 2018. Numerical simulation of compaction-induced stress for the analysis of RS walls under working conditions. J. Geotext. Geomembranes 46(3), 354–365.
  • [18] Scotland, I., Dixon, N., Frost, M., Fowmes, G., Horgan, G., 2016. Modelling deformation during the construction of wrapped geogrid-reinforced structures. Geosynth. Int. 23(3), 219–232.
  • [19] Zheng, Y., Fox, P.J., McCartney, J.S., 2018a. Numerical simulation of deformation and failure behavior of geosynthetic reinforced soil bridge abutments. J. Geotech. Geoenviron. Eng. 144 (7) 04018037.
  • [20] Zheng, Y., Fox, P.J., McCartney, J.S., 2018b. Numerical simulation of the deformation response of geosynthetic reinforced soil mini-piers. Geosynth. Int. 25 (3), 271–286.      

 

Professor

  • Mauricio Ehrlich
  • Seyedhamed Mirmoradi

 

Créditos / CH (Credits/ Workload)

3.0 / 45h 

Imprimir