COC 874 - Tópicos Especiais em modelagem numérica 3D de aterros estruturados

Objetivos

    Desenvolver conceitos sobre modelagem numérica 3D de aterros estruturados

  1. Ementa (Syllabus)

    i. Introdução ao método dos elementos finitos e aplicação de modelagem numérica em geotécnica

        ii. Etapas principais para a simulação numérica de condições reais do campo

        iii. Serão destacadas a influência de diversos fatores (modélos constitutívos, etápas construtívas, rigidez e espacamento dos reforços, e condições geométricos) no comportamento e desempenho destas


Bibliografia (Bibliography

[1] Al-Naddaf, M., Han, J., Xu, C., Jawad, S., and Abdulrasool, G. (2019). “Experimental Investigation of Soil Arching Mobilization and Degradation under Localized Surface Loading.” Journal of Geotechnical and Geoenvironmental Engineering, 145(12).

[2] Almeida, M. S. S., Fagundes, D. F., Thorel, L., and Blanc, M. (2020). “Geosynthetic-reinforced pile-embankments: Numerical, analytical and centrifuge modelling.” Geosynthetics International.

[3] Bolton, M. D. 1986. The strength and dilatancy of sands.
Géotechnique 36, No. 1, 65–78.

[4] Brinkgreve, R.B.J., Vermeer, P.A., 2015. PLAXIS: Finite Element Code for Soil and Rock Analyses. CRC Press, Balkema, Leiden, Netherlands .

[5] David M. Potts, Lidija Zdravkovic, Lidija Zdravković 1999. Finite Element Analysis in Geotechnical Engineering application. Thomas Telford, 2001 - Technology & Engineering - 427 p.

[6] Duncan, J.M., Seed, R.B., 1986. Compaction-induced earth pressures under Ko-conditions. J. Geotech. Engng. ASCE 112 (1), 1–22

[7] Duncan, J. M., Byrne, P., Wong, K. S. & Mabry, P. 1980. Strength, stress–strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses, Geotechnical Engineering Research, Report No. UCB/GT/80-O1. Berkeley, CA, USA: University of California.

[8] Girout, R., Blanc, M., Dias, D., and Thorel, L. (2014). “Numerical 

analysis of a geosynthetic reinforced piled load transfer platform -Validation on centrifuge test.” Geotextiles and Geomembranes, 42(5).

[9] Han, J., and Gabr, M. A. (2002). “Numerical analysis of geosynthetic-reinforced and pile supported earth platforms over soft soil.” Journal of Geotechnical and Geoenvironmental Engineering.

[10] Jenck, O., Dias, D., and Kastner, R. (2007). “Two-dimensional physical and numerical modeling of a pile-supported earth platform over soft soil.” Journal of Geotechnical and Geoenvironmental Engineering, 133(3), 295–305.

[11] Plaxis. (2012).Material models manual, Plaxis, Delft Univ. of Technolo-gy, Delft, Netherlands.

[12] Van Eekelen, S. J. M., Bezuijen, A., Lodder, H. J., and Van Tol, A.
F. (2012a). “Model experiments on piled embankments. Part I.” Geotextiles and Geomembranes.

[13] 471 Van Eekelen, S. J. M., Bezuijen, A., Lodder, H. J., and Van Tol, A. F. (2012b). “Model experiments on piled embankments. Part II.” Geotextiles and Geomembranes.

[14] Zhang, L., Zhou, S., Zhao, H., and Deng, Y. (2018). “Performance of Geosynthetic-Reinforced and Pile-Supported Embankment with Consideration of Soil Arching.” Journal of Engineering Mechanics, 144(12), 06018005.

[15] Zhuang, Y., Cui, X. Y., Wang, K. Y., and Zhang, J. (2021). “A simple design approach to analyse the piled embankment including tensile reinforcement and subsoil contributions.” Geotextiles and Geomembranes, 49(2).



Professor


· Mauricio Ehrlich
· Seyedhamed Mirmoradi

 

Créditos / CH (Credits/ Workload)

3.0 / 45h 

Imprimir